S.No. 8047

24DPMA02

(For the candidates admitted from 2024–25 onwards)

M.Sc. DEGREE EXAMINATION, AUGUST 2025

First Semester

Maths

REAL ANALYSIS - I

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

Answer ALL questions.

- 1. Define bounded variation on [a, b].
- 2. Define absolute convergence.
- 3. Define Riemann Stieltjes sum.
- 4. State the comparison theorems.
- 5. State the second fundamental theorem of integral calculus.
- 6. State the theorem on change of variable in a Riemann integral.
- 7. Define a double sequence.
- 8. State the Cesaro sum.
- 9. State the Cauchy condition for uniform Convergence of series.
- 10. Define bounded convergence.

PART B —
$$(3 \times 5 = 15 \text{ marks})$$

Answer any THREE questions out of Five questions.

- 11. If f is monotonic on [a, b] then prove that the set of discontinuities of f is countable.
- 12. If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on [a, b] then prove that $c_1 f + c_2 g \in R(\alpha)$ on [a, b] and we have $\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha.$
- 13. Let α be of bounded variation on [a, b] and assume that $f \in R(\alpha)$ on [a, b] then prove that $f \in R(\alpha)$ on every subinterval [c, d] of [a, b].

- 14. If each $a_n > 0$ then prove that the product $\prod (1 + a_n)$ converges if and only if the series $\sum a_n$ converges.
- 15. Assume that f_n converges to uniformly on S. If each f_n is continuous at a point c of S then prove that the limit function f is also continuous at c.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions.

16. (a) State and prove additive property of total variation.

Or

- (b) Let f be of bounded variation on [a,b]. If $x \in (a,b]$ let $v(x) = v_f(a,x)$ and put v(a) = 0. Then prove the necessary and sufficient part for every point of continuity of 'f' is also a point of continuity of v.
- 17. (a) State and prove the formula for integration by parts.

Or

- (b) If $f \in R(\alpha)$ on [a, b] then prove that $f^2 \in R(\alpha)$ on [a, b].
- 18. (a) State and prove the second Mean–value theorem for Riemann-Stieltjes integral.

Or

- (b) Let v(x) denote the total variation of α on [a, x] if $a < x \le b$ and let V(a) = 0. Let f be defined and bounded on [a, b]. If $f \in R(\alpha)$ on [a, b] then prove that $f \in R(v)$ on [a, b].
- 19. (a) State and prove the Cauchy's condition for products.

Or

- (b) State and prove the Abel's limit theorem.
- 20. (a) State and prove the Dirichlet's test for uniform convergence.

Or

- (b) Assume that $f_n \to f$ uniformly on [a, b] and define $g_n(x) = \int_a^x f_n(t) d\alpha(t)$ if $x \in [a,b]$, $n = 1,2\cdots$ then prove the following.
 - (i) $f \in R(\alpha)$ on [a, b].
 - (ii) $g_n \to g$ uniformly on [a, b] where.

$$g(x) = \int_{a}^{x} f(t)d\alpha(t).$$

S.No. 8047